Red-light cameras for the prevention of road traffic crashes: Cochrane systematic review


Assessed as up to date: 2005/02/23


Road crashes are a prime cause of death and disability and red-light running is a common cause of crashes at signalised intersections. Red-light cameras are increasingly used to promote compliance with traffic signals. Manual enforcement methods are resource intensive and high risk, whereas red-light cameras can operate 24 hours a day and do not involve high-speed pursuits.


To quantify the impact of red-light cameras on the incidence and severity of road crashes and casualties, and the incidence of red-light violations.

Search methods

We searched the following electronic databases: TRANSPORT (NTIS, TRIS, IRRD,TRANSDOC), Cochrane Injuries Group Specialised Register, Cochrane Controlled Trials Register, MEDLINE, EMBASE and the Australian Transport Index. We checked the reference lists of relevant papers and contacted research and advocacy organisations.

Selection criteria

Randomised or quasi-controlled trials and controlled before-after studies of red-light cameras. For crash impact evaluation, the before and after periods each had to be at least one year in length. For violation studies, the after period had to occur at least one year after camera installation.

Data collection and analysis

Two reviewers independently extracted data on study type, characteristics of camera and control areas, and data collection period. Before-after data were collected on number of crashes by severity, collision type, deaths and injuries, and red-light violations. Rate ratio was calculated for each study. Where there was more than one, rate ratios were pooled to give an overall estimate, using a generic inverse variance method and a random-effects model.

Main results

No randomised controlled trials were identified but 10 controlled before-after studies from Australia, Singapore and the USA met our inclusion criteria. We grouped them according to the extent to which they adjusted for regression to the mean (RTM) and spillover effects. Total casualty crashes: the only study that adjusted for both reported a rate ratio of 0.71 (95% CI to 0.55, 0.93); for three that partially adjusted for RTM but failed to consider spillover, rate ratio was 0.87 (95% CI to 0.77, 0.98); one that made no adjustments had a rate ratio of 0.80 (95% CI 0.58 to 1.12). Right-angle casualty crashes: rate ratio for two studies that partially addressed RTM was 0.76 (95% CI 0.54 to 1.07). Total crashes: the study addressing both RTM and spillover reported a rate ratio of 0.93 (95% CI 0.83 to 1.05); one study that partially addressed RTM had a rate ratio of 0.92 (95% CI 0.73 to 1.15); the pooled rate ratio from the five studies with no adjustments was 0.74 (95% CI 0.53 to 1.03). Red-light violations: one study found a rate ratio of 0.53 (95% CI 0.17 to 1.66).

Authors' conclusions

Red-light cameras are effective in reducing total casualty crashes. The evidence is less conclusive on total collisions, specific casualty collision types and violations, where reductions achieved could be explained by the play of chance. Most evaluations did not adjust for RTM or spillover, affecting their accuracy. Larger and better controlled studies are needed.


Aeron-Thomas Amy, Hess Stephane


'Red-light cameras' cut casualty crashes at junctions with traffic lights

Road crashes are a leading cause of death and injury. One common place for these to happen is at junctions (intersections) controlled by traffic signals. 'Red-light cameras' are now widely used to identify drivers that jump ('run') red lights, who can then be prosecuted. This review looked for studies of their effectiveness in reducing the number of times that drivers drive through red lights and the number of crashes. Very little research has been done and much of it has not allowed for the statistical problems that occur when recording this kind of information. However, five studies in Australia, Singapore and the USA all found that use of red-light cameras cut the number of crashes in which there were injuries. In the best conducted of these studies, the reduction was nearly 30%. More research is needed to determine best practice for red-light camera programmes, including how camera sites are selected, signing policies, publicity programmes and penalties.

Reviewer's Conclusions

Implications for practice

The results show red-light cameras are effective in reducing total casualty crashes at signalised intersections. Policies on warning signs and camera site selection should aim to maximise the casualty reduction impact, including that at nearby non-camera sites, which may benefit from spillover effects.

Implications for research

Only ten evaluations met the inclusion criteria and their results were limited by methodological weaknesses with insufficient adjustment for regression to mean and spillover. Trials are needed which account for both these key factors and evaluate the impact of different signing policies (camera site specific or gateway approaches) and camera site selections (hazardous locations only or other concerns including geographic dispersion). Red-light camera approval procedures should also include proper monitoring and evaluation requirements.

Get full text at The Cochrane Library

Red-light cameras for the prevention of road traffic crashes: Cochrane systematic review is a sample topic from the Cochrane Abstracts.

To view other topics, please or purchase a subscription.

Evidence Central is an integrated web and mobile solution that helps clinicians quickly answer etiology, diagnosis, treatment, and prognosis questions using the latest evidence-based research. Learn more.


* When formatting your citation, note that all book, journal, and database titles should be italicized* Article titles in AMA citation format should be in sentence-case
TY - ELEC T1 - Red-light cameras for the prevention of road traffic crashes: Cochrane systematic review ID - 434319 BT - Cochrane Abstracts UR - DB - Evidence Central DP - Unbound Medicine ER -